A Modified Penalty Function Method for Inequality Constraints Minimization
نویسندگان
چکیده
In this paper we introduce a modified penalty function (MPF) method for solving a problem which minimizes a nonlinear programming subject to inequality constraints. Basically, this method is a combination of the modified penalty methods and the Lagrangian methods. It treats inequality constraints with a modified penalty function and avoids the indifferentiability of max {x, 0}. This method alternatively minimizes the MPF and updates the Lagrange multipliers. It converges linearly for a large enough penalty parameter under the standard second-order optimality conditions and superlinear convergence can be attained by increasing the penalty parameter after updating Lagrange multiplier step by step. Numerical experiments show that the proposed method is considerably faster than the method based on classical penalty function.
منابع مشابه
An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملA Modified Barrier-Augmented Lagrangian Method for Constrained Minimization
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modifi...
متن کاملA Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملVOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کاملGlobal Competitive Ranking for Constraints Handling with Modified Differential Evolution
Constrained nonlinear programming problems involving a nonlinear objective function with inequality and/or equality constraints introduce the possibility of multiple local optima. The task of global optimization is to find a solution where the objective function obtains its most extreme value while satisfying the constraints. Depending on the nature of the involved functions many solution metho...
متن کامل